首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   5篇
  国内免费   9篇
大气科学   27篇
地球物理   16篇
地质学   18篇
海洋学   18篇
天文学   19篇
综合类   4篇
自然地理   3篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   14篇
  2015年   5篇
  2014年   5篇
  2013年   7篇
  2012年   3篇
  2011年   5篇
  2010年   3篇
  2009年   4篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1985年   2篇
  1982年   1篇
  1973年   2篇
排序方式: 共有105条查询结果,搜索用时 0 毫秒
101.
一次华南暴雨过程的数值模拟和试验   总被引:14,自引:9,他引:5  
张立凤  查石祥 《气象科学》2000,20(2):120-128
本文利用有限区域数值预报模式MM4对一次华南暴雨过程进行了数值模拟和试验.用该模式预报的形势场与实况较一致,预报的暴雨强度、位置也与实况相近.此外由控制试验和敏感性试验可知,该暴雨强度对地形、辐射和下垫面过程比较敏感.  相似文献   
102.
Although waveform inversion has been intensively studied in an effort to properly delineate the Earth's structures since the early 1980s, most of the time‐ and frequency‐domain waveform inversion algorithms still have critical limitations in their applications to field data. This may be attributed to the highly non‐linear objective function and the unreliable low‐frequency components. To overcome the weaknesses of conventional waveform inversion algorithms, the acoustic Laplace‐domain waveform inversion has been proposed. The Laplace‐domain waveform inversion has been known to provide a long‐wavelength velocity model even for field data, which may be because it employs the zero‐frequency component of the damped wavefield and a well‐behaved logarithmic objective function. However, its applications have been confined to 2D acoustic media. We extend the Laplace‐domain waveform inversion algorithm to a 2D acoustic‐elastic coupled medium, which is encountered in marine exploration environments. In 2D acoustic‐elastic coupled media, the Laplace‐domain pressures behave differently from those of 2D acoustic media, although the overall features are similar to each other. The main differences are that the pressure wavefields for acoustic‐elastic coupled media show negative values even for simple geological structures unlike in acoustic media, when the Laplace damping constant is small and the water depth is shallow. The negative values may result from more complicated wave propagation in elastic media and at fluid‐solid interfaces. Our Laplace‐domain waveform inversion algorithm is also based on the finite‐element method and logarithmic wavefields. To compute gradient direction, we apply the back‐propagation technique. Under the assumption that density is fixed, P‐ and S‐wave velocity models are inverted from the pressure data. We applied our inversion algorithm to the SEG/EAGE salt model and the numerical results showed that the Laplace‐domain waveform inversion successfully recovers the long‐wavelength structures of the P‐ and S‐wave velocity models from the noise‐free data. The models inverted by the Laplace‐domain waveform inversion were able to be successfully used as initial models in the subsequent frequency‐domain waveform inversion, which is performed to describe the short‐wavelength structures of the true models.  相似文献   
103.
104.
105.
A simplified model is presented to predict the strength variations of brittle matrix composites, reinforced by steel fibres, with the variations of fibre parameters—length, diameter and volume fraction. This model predicts that its tensile and flexural strength increase non‐linearly with the fibre volume fraction. It also predicts that similar non‐linear behaviour should be observed with the reduction of the fibre diameter when other parameters are kept constant. The experimental results support both these theoretical predictions. It is also explained why an increase in the fibre length does not always significantly increase the fracture toughness. The objective of this paper is not to explain and understand in great detail the science of all phenomena responsible for the strength increase of fibre reinforced brittle matrix composites, but to provide a simple engineering explanation as to why its strength increases with the fibre addition, and how this increase can be quantitatively related to the variations in fibre parameters—fibre volume fraction, fibre length and diameter. These simplifying steps are needed to provide a tool that the practicing engineers can use to predict the brittle matrix strength variation with the fibre parameters. In the area of geomechanics, the results presented here can be used to assess and predict the behaviour of fibre‐reinforced earth. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号